Аминокислоты — Википедия
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). [1] Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.
Большинство из около 500 известных аминокислот были открыты после 1953 года, например во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречается в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.
Открытие аминокислот в составе белков[править | править код]
Аминокислота | Аббревиатура | Год | Источник | Впервые выделен[2] |
---|---|---|---|---|
Глицин | Gly, G | 1820 | Желатин | А. Браконно |
Лейцин | Leu, L | 1820 | Мышечные волокна | А. Браконно |
Тирозин | Tyr, Y | 1848 | Казеин | Ю. фон Либих |
Серин | Ser, S | 1865 | Шёлк | Э. Крамер |
Глутаминовая кислота | Glu, E | 1866 | Растительные белки | Г. Риттхаузен[de] |
Глутамин | Gln, Q | |||
Аспарагиновая кислота | Asp, D | 1868 | Конглутин, легумин (ростки спаржи) | Г. Риттхаузен [en] |
Аспарагин | Asn, N | 1806 | Сок спаржи | Л.-Н. Воклен и П. Ж. Робике |
Фенилаланин | Phe, F | 1881 | Ростки люпина | Э. Шульце, Й. Барбьери |
Аланин | Ala, A | 1888 | Фиброин шелка | А. Штреккер, Т. Вейль |
Лизин | Lys, K | 1889 | Казеин | Э. Дрексель |
Аргинин | Arg, R | 1895 | Вещество рога | С. Гедин |
Гистидин | His, H | 1896 | Стурин, гистоны | А. Коссель[3], С. Гедин |
Цистеин | Cys, C | 1899 | Вещество рога | К. Мёрнер |
Валин | Val, V | 1901 | Казеин | Э. Фишер |
Пролин | Pro, P | 1901 | Казеин | |
Гидроксипролин | Hyp, hP | 1902 | Желатин | Э. Фишер |
Триптофан | Trp, W | 1902 | Казеин | Ф. Хопкинс, Д. Кол |
Изолейцин | Ile, I | 1904 | Фибрин | Ф. Эрлих |
Метионин | Met, M | 1922 | Казеин | Д. Мёллер |
Треонин | Thr, T | 1925 | Белки овса | С. Шрайвер и др. |
Гидроксилизин | Hyl, hK | 1925 | Белки рыб | С. Шрайвер и др. |
Жирным шрифтом выделены незаменимые аминокислоты
По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.
Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:
- NH2 —CH2 —COOH + HCl → HCl • NH2 —CH2 —COOH (Хлороводородная соль глицина)
- NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)
Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.
Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.
Этерификация:
- NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.
Реакция образования пептидов:
- HOOC —CH2 —NH —H + HOOC —CH2 —NH2→ HOOC —CH2 —NH —CO —CH2 —NH2 + H2O
Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.
Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.
Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.
Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:
- CH3COOH + Cl2 + (катализатор) → CH2ClCOOH + HCl; CH2ClCOOH + 2NH3→ NH2 —CH
2COOH + NH4Cl
Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.
Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[4], что может быть использовано для определения возраста млекопитающих. Рацемизация аспартата также отмечена при старении коллагена; предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счёт образования сукцинимидного кольца при внутримолекулярном ацилировании атома азота пептидной связи свободной карбоксильной группой аспарагиновой кислоты [5].
С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов.[6] Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих[7].
В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.
Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.[8]
Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.
В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O).[9][10] Это так называемые 21-я и 22-я аминокислоты.[11]
Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым[12]. Решение этого вопроса смотрим в работе[13]. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.
Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:
Классификация[править | править код]
Аминокислота | 3-буквы[14] | 1-буква[14] | аминокислот | мнемоническое правило[15] | Полярность[16] | радикалу | Mr | Vw (Å3) | pI | шкала гидрофобности[17] | частота в белках (%)[18] |
---|---|---|---|---|---|---|---|---|---|---|---|
Глицин | Gly | G | GGU, GGC, GGA, GGG | Glycine | Неполярные | Алифатические | 75.067 | 48 | 6.06 | −0.4 | 7.03 |
Аланин | Ala | A | GCU, GCC, GCA, GCG | Alanine | Неполярные | Алифатические | 89.094 | 67 | 6.01 | 1.8 | 8.76 |
Валин | Val | V | GUU, GUC, GUA, GUG | Valine | Неполярные | Алифатические | 117.148 | 105 | 6.00 | 4.2 | 6.73 |
Изолейцин | Ile | I | AUU, AUC, AUA | Isoleucine | Неполярные | Алифатические | 131.175 | 124 | 6.05 | 4.5 | 5.49 |
Лейцин | Leu | L | UUA, UUG, CUU, CUC, CUA, CUG | Leucine | Неполярные | Алифатические | 131.175 | 124 | 6.01 | 3.8 | 9.68 |
Пролин | Pro | P | CCU, CCC, CCA, CCG | Proline | Неполярные | Гетероциклические | 115.132 | 90 | 6.30 | −1.6 | 5.02 |
Серин | Ser | S | UCU, UCC, UCA, UCG, AGU, AGC | Serine | Полярные | Оксимоноаминокарбоновые | 105.093 | 73 | 5.68 | −0.8 | 7.14 |
Треонин | Thr | T | ACU, ACC, ACA, ACG | Threonine | Полярные | Оксимоноаминокарбоновые | 119.119 | 93 | 5.60 | −0.7 | 5.53 |
Цистеин | Cys | C | UGU, UGC | Cysteine | Полярные | Серосодержащие | 121.154 | 86 | 5.05 | 2.5 | 1.38 |
Метионин | Met | M | AUG | Methionine | Неполярные | Серосодержащие | 149.208 | 124 | 5.74 | 1.9 | 2.32 |
Аспарагиновая кислота | Asp | D | GAU, GAC | asparDic acid | Полярные заряженные отрицательно | заряженные отрицательно | 133.104 | 91 | 2.85 | −3.5 | 5.49 |
Аспарагин | Asn | N | AAU, AAC | asparagiNe | Полярные | Амиды | 132.119 | 96 | 5.41 | −3.5 | 3.93 |
Глутаминовая кислота | Glu | E | GAA, GAG | gluEtamic acid | Полярные заряженные отрицательно | заряженные отрицательно | 147.131 | 109 | 3.15 | −3.5 | 6.32 |
Глутамин | Gln | Q | CAA, CAG | Q-tamine | Полярные | Амиды | 146.146 | 114 | 5.65 | −3.5 | 3.9 |
Лизин | Lys | K | AAA, AAG | before L | Полярные | заряженные положительно | 146.189 | 135 | 9.60 | −3.9 | 5.19 |
Аргинин | Arg | R | CGU, CGC, CGA, CGG, AGA, AGG | aRginine | Полярные | заряженные положительно | 174.203 | 148 | 10.76 | −4.5 | 5.78 |
Гистидин | His | H | CAU, CAC | Histidine | Полярные заряженные положительно | Гетероциклические | 155.156 | 118 | 7.60 | −3.2 | 2.26 |
Фенилаланин | Phe | F | UUU, UUC | Fenylalanine | Неполярные | Ароматические | 165.192 | 135 | 5.49 | 2.8 | 3.87 |
Тирозин | Tyr | Y | UAU, UAC | tYrosine | Полярные | Ароматические | 181.191 | 141 | 5.64 | −1.3 | 2.91 |
Триптофан | Trp | W | UGG | tWo rings | Неполярные | Ароматические, Гетероциклические | 204.228 | 163 | 5.89 | −0.9 | 6.73 |
По радикалу[править | править код]
- Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
- Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
- Ароматические: фенилаланин, триптофан, тирозин
- Полярные заряженные отрицательно при pH=7: аспартат, глутамат
- Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[16]
По функциональным группам[править | править код]
- Алифатические
- Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
- Оксимоноаминокарбоновые: серин, треонин
- Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
- Амиды моноаминодикарбоновых: аспарагин, глутамин
- Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
- Серосодержащие: цистеин, метионин
- Ароматические: фенилаланин, тирозин, триптофан,
- Гетероциклические: триптофан, гистидин, пролин
- Иминокислоты: пролин
По классам аминоацил-тРНК-синтетаз[править | править код]
- Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
- Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин
Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.
По путям биосинтеза[править | править код]
Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:
- Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
- Семейство глутамата: глутамат, глутамин, аргинин, пролин.
- Семейство пирувата: аланин, валин, лейцин.
- Семейство серина: серин, цистеин, глицин.
- Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.
Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.
По способности организма синтезировать из предшественников[править | править код]
- Незаменимые
- Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
- Заменимые
- Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.
Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.
По характеру катаболизма у животных[править | править код]
Биодеградация аминокислот может идти разными путями.
По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:
Аминокислоты:
- Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
- Кетогенные: лейцин, лизин.
- Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.
«Миллеровские» аминокислоты[править | править код]
«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат
В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:
Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.[19]
Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.[20]
- ↑ 1 2 Wagner I., Musso H. New Naturally Occurring Amino Acids (нем.) // Angewandte Chemie International Edition in English : magazin. — 1983. — November (Bd. 22, Nr. 11). — S. 816—828. — DOI:10.1002/anie.198308161.
- ↑ Овчинников Ю. А. «Биоорганическая химия» М:Просвещение, 1987. — 815 с., стр. 25.
- ↑ Карпов В. Л. От чего зависит судьба гена (рус.) // Природа. — Наука, 2005. — № 3. — С. 34—43.
- ↑ Helfman, P M; J L Bada. Aspartic acid racemization in tooth enamel from living humans (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1975. — Vol. 72, no. 8. — P. 2891 —2894.
- ↑ CLOOS P; FLEDELIUS C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential (неопр.) (1 февраля 2000). Дата обращения 5 сентября 2011. Архивировано 2 февраля 2012 года.
- ↑ J. van Heijenoort. Formation of the glycan chains in the synthesis of bacterial peptidoglycan // Glycobiology. — 2001-3. — Т. 11, вып. 3. — С. 25R—36R. — ISSN 0959-6658.
- ↑ Herman Wolosker, Elena Dumin, Livia Balan, Veronika N. Foltyn. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration // The FEBS journal. — 2008-7. — Т. 275, вып. 14. — С. 3514—3526. — ISSN 1742-464X. — DOI:10.1111/j.1742-4658.2008.06515.x.
- ↑ H. Brötz, M. Josten, I. Wiedemann, U. Schneider, F. Götz. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics // Molecular Microbiology. — 1998-10. — Т. 30, вып. 2. — С. 317—327. — ISSN 0950-382X.
- ↑ Linda Johansson, Guro Gafvelin, Elias S.J. Arnér. Selenocysteine in proteins—properties and biotechnological use // Biochimica et Biophysica Acta (BBA) — General Subjects. — 2005-10. — Т. 1726, вып. 1. — С. 1—13. — ISSN 0304-4165. — DOI:10.1016/j.bbagen.2005.05.010.
- ↑ Joseph A. Krzycki. The direct genetic encoding of pyrrolysine // Current Opinion in Microbiology. — 2005-12. — Т. 8, вып. 6. — С. 706—712. — ISSN 1369-5274. — DOI:10.1016/j.mib.2005.10.009.
- ↑ Alexandre Ambrogelly, Sotiria Palioura, Dieter Söll. Natural expansion of the genetic code // Nature Chemical Biology. — 2007-1. — Т. 3, вып. 1. — С. 29—35. — ISSN 1552-4450. — DOI:10.1038/nchembio847.
- ↑ Andrei S. Rodin, Eörs Szathmáry, Sergei N. Rodin. On origin of genetic code and tRNA before translation // Biology Direct. — 2011-02-22. — Т. 6. — С. 14. — ISSN 1745-6150. — DOI:10.1186/1745-6150-6-14.
- ↑ Burtyka M.V. Биометрия: метрика молекулярного углеродистого многообразия.CTAG biometry=http://biometry-burtyka.blogspot.com.
- ↑ 1 2 Cooper, Geoffrey M. The cell : a molecular approach. — 3rd ed. — Washington, D.C.: ASM Press, 2004. — xx, 713 pages с. — ISBN 0878932143, 9780878932146, 0878930760, 9780878930760.
- ↑ Р. Б. Соловьев, учитель биологии. Несколько мнемонических правил
- ↑ 1 2 Березов Т.Т., Коровкин Б.Ф. Классификация аминокислот // Биологическая химия. — 3-е изд., перераб. и доп.. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
- ↑ J. Kyte
Незаменимые аминокислоты — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. 21 протеиногенная α-аминокислота эукариот, сгруппированные согласно радикалам.Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме. Для разных видов организмов список незаменимых аминокислот различен. Все белки, синтезируемые организмом, собираются в клетках из 20 базовых аминокислот, только часть из которых может синтезироваться организмом. Невозможность сборки определенного белка организмом приводит к нарушению его нормальной работы, поэтому необходимо поступление незаменимых аминокислот в организм с пищей. [1]
Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин; также часто к незаменимым относят гистидин [2][3]; (F V T W M L I K H). Для детей также незаменимым является аргинин.
6 других аминокислот (R C G Q P Y) считаются условно незаменимыми в питании человека, что означает ограниченные возможности их синтеза в зависимости от состояния организма, например у новорожденных и больных людей.[4].
5 аминокислот (A D N E S) — заменимые у человека, означает что они могут синтезироваться в достаточных количествах в организме.[4]
Роль незаменимых для человека аминокислот[править | править код]
В результате дефицита необходимых аминокислот в организме человека нарушается синтез белков, что приводит к ослаблению функций памяти и умственных способностей, снижению иммунитета (сопротивляемости организма болезням). В то же время избыток потребления несбалансированного белка приводит к перегрузке работы органов, в первую очередь печени и почек. Ценность потребляемого с пищей белка для человека определяется его сбалансированностью по содержанию незаменимых аминокислот.[1]
Рассчитать требования к рекомендованной суточной норме достаточно сложно; эти значения претерпели значительные изменения за последние 20 лет. Следующая таблица представляет список рекомендованных ВОЗ и Национальной библиотекой медицины США суточных норм для взрослого человека.[5][6]
Аминокислота(ы) | ВОЗ мг на 1 кг веса тела | ВОЗ мг для веса 70 кг | США мг на 1 кг веса тела | Кодирующий кодон генетического кода |
---|---|---|---|---|
H Гистидин | 10 | 700 | 14 | CAU, CAC |
I Изолейцин | 20 | 1400 | 19 | AUU, AUC, AUA |
L Лейцин | 39 | 2730 | 42 | UUA, UUG, CUU, CUC, CUA, CUG |
K Лизин | 30 | 2100 | 38 | AAA, AAG |
M Метионин + C Цистеин | 10.4 + 4.1 (15 всего) | 1050 всего | 19 всего | Метионин: AUG; Цистеин: UGU, UGC. |
F Фенилаланин + Y Тирозин | 25 (всего) | 1750 всего | 33 всего | Фенилаланин: UUU, UUC; Тирозин: UAU,UAC . |
T Треонин | 15 | 1050 | 20 | ACU, ACC, ACA, ACG |
W Триптофан | 4 | 280 | 5 | UGG |
V Валин | 26 | 1820 | 24 | GUU, GUC, GUA, GUG |
Рекомендованная суточная норма для детей от 3 лет и старше на 10-20% выше, чем для взрослого.[5][7]
Продукты с повышенным содержанием отдельных незаменимых аминокислот[править | править код]
- Валин: зерновые, бобовые, арахис, грибы, молочные продукты, мясо.
- Изолейцин: миндаль, кешью, турецкий горох (нут), чечевица, рожь, большинство семян, соя, яйца, куриное мясо, рыба, печень, мясо.
- Лейцин: чечевица, орехи, большинство семян, овёс, бурый (неочищенный) рис, рыба, яйца, курица, мясо.
- Лизин: пшеница, орехи, амарант, молочные продукты, рыба, мясо, горох.
- Метионин: бобы, фасоль, чечевица, соя, молоко, яйца, рыба, мясо.
- Треонин: орехи, бобы, молочные продукты, яйца.
- Триптофан: бобовые, овёс, сушёные финики[источник не указан 1938 дней], арахис, кунжут, кедровые орехи, молоко, йогурт, творог, рыба, курица, индейка, мясо.
- Фенилаланин: бобовые, орехи, говядина, куриное мясо, рыба, яйца, творог, молоко. Также образуется в организме при распаде синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.
- Аргинин (частично-заменимая аминокислота, образуется из аминокислот, поступающих с пищей, не путать с условно-заменимыми, которые образуются из незаменимых кислот, не поступающих с пищей): семена тыквы, арахис, кунжут, йогурт, швейцарский сыр, свинина, говядина, горох.
- Гистидин (частично-заменимая аминокислота): соевые бобы, арахис, чечевица, тунец, лосось, куриные грудки, свиная вырезка, говяжье филе.
Компенсация незаменимых аминокислот[править | править код]
Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так, например, недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп снижает потребности в метионине, а глутаминовая кислота частично замещает аргинин.
- ↑ 1 2 https://cyberleninka.ru/article/n/metodologiya-otsenki-sbalansirovannosti-aminokislotnogo-sostava-mnogokomponentnyh-pischevyh-produktov.pdf
- ↑ https://www.ncbi.nlm.nih.gov/pubmed/1123426 1975
- ↑ apps.who.int/iris/bitstream/10665/38133/1/9251030979_eng.pdf 1991
- ↑ 1 2 Dietary Reference Intakes: The Essential Guide to Nutrient Requirements Архивировано 5 июля 2014 года.. Institute of Medicine’s Food and Nutrition Board. usda.gov
- ↑ 1 2 FAO/WHO/UNU. PROTEIN AND AMINO ACID REQUIREMENTS IN HUMAN NUTRITION (неопр.). WHO Press (2007)., page 150
- ↑ Institute of Medicine (англ.)русск.. Protein and Amino Acids // Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (англ.). — Washington, DC: The National Academies Press (англ.)русск., 2002. — P. 589—768.
- ↑ Imura K., Okada A. Amino acid metabolism in pediatric patients (неопр.) // Nutrition. — 1998. — Т. 14, № 1. — С. 143—148. — DOI:10.1016/S0899-9007(97)00230-X. — PMID 9437700.
- Amino acids / MedlinePlus Encyclopedia, 2015: (англ.) «The 9 essential amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.»
- https://web.archive.org/web/20150226110517/http://www.uic.edu/classes/phar/phar332/Clinical_Cases/aa%20metab%20cases/PKU%20Cases/essential-nonessential.htm
- ESSENTIAL AMINO ACID REQUIREMENTS: A REVIEW / FAO, 1981
- Recommended Dietary Allowances: 10th Edition., National Research Council (US), National Academies Press 1989. Chapter 6 «Protein and Amino Acids» (англ.)
Что такое аминокислоты, для чего нужны и как принимать аминокислоты
Пора выяснить что такое аминокислоты, для чего они нужны и как их правильно принимать.
Аминокислоты служат «строительным материалом» для белков, поскольку благодаря уникальной последовательности 21 вида данных органических соединений в организме образуются все типы белков и мышечные ткани. В плане химического строения, аминокислоты характеризуются наличием аминогруппы с атомом азота, которая является основой данного соединения.
Присутствие атома азота отличает аминокислоты от других питательных веществ, которые мы получаем из пищи (например, углеводов), вот почему это — единственные соединения, которые способны образовывать ткани, органы, мышцы, кожу и волосы.
Сейчас, когда люди слышат о белке, они автоматически думают лишь мышцах и бодибилдинге, хотя аминокислоты являются значимым компонентом диеты любого человека, но в особенности это важно для тех, кто занимается каким-либо видом спорта. Аминокислоты обычно делятся на 3 категории: незаменимые, полузаменимые и заменимые.
Содержание статьи
Незаменимые аминокислоты
Что подразумевается под словом «незаменимые»? «Незаменимые» означает, что эти аминокислоты не могут быть синтезированы в организме и должны поступать в него с пищей. Существует 9 незаменимых аминокислот, в числе которых знаменитая группа ВСАА.
Аминокислоты с разветвленными боковыми цепями (ВСАА)
Лейцин, изолейцин и валин
Из 9-ти незаменимых аминокислот 3 относятся к категории аминокислот с разветвленными цепями. Это лейцин, изолейцин и валин. ВСАА имеют уникальное химическое строение по сравнению с другими незаменимыми аминокислотами, и поэтому обладают особыми свойствами. В отличие от остальных аминокислот, ВСАА быстрее и лучше усваиваются организмом, то есть они абсорбируются не в желудке, а фактически поступают непосредственно в мышцы. Чтобы узнать больше о ВСАА, читайте нашу статью «ВСАА. Что такое аминокислоты с разветвленными цепями?».
Другие незаменимые аминокислоты
Остальные незаменимые аминокислоты: гистидин, метионин, фенилаланин, треонин, триптофан и лизин, – необходимы организму для выполнения ряда физиологических функций.
Гистидин
Гистидин – ароматическая аминокислота, которая выполняет ряд жизненно важных функций в организме, в том числе участвует в синтезе гемоглобина, функционировании иммунной системы и восстановлении тканей. Гистидин является важной аминокислотой в период роста человека, а также при реабилитации после болезни.
Лизин
Лизин играет важную роль в функционировании иммунной системы. Он также наряду с полузаменимыми кислотами участвует в синтезе коллагена, чтобы кожа, волосы и ногти оставались здоровыми.
Триптофан
Триптофан – это незаменимая ароматическая аминокислота, которая содержит ядро индола. Она выполняет ряд функций в организме, в частности играет роль химического посыльного в нервной системе. В отличие от других аминокислот, L-триптофан не растворяется в воде и устойчив к теплу, то есть в процессе обработки не теряет большую часть полезных свойств.
Метионин
Метионин — это аминокислота с неприятным запахом (содержит атом серы), которая является предшественником других аминокислот, таких как таурин. Ее антиоксидантные свойства способны защищать организм, подавляя в нем действие вредных веществ. Она также участвует в построении белков и выработке различных гормонов, в том числе адреналина и мелатонина.
Фенилаланин
Фенилаланин является неполярной аминокислотой, которая обладает бензильной боковой цепью и известна своими антидепрессантными свойствами. Она играет важную роль в выработке допамина и адреналина.
Треонин
Эта аминокислота является полярной незаряженной, и после усвоения преобразуется в пируват, играя важную роль в производстве глюкозы и выработке энергии АТФ.
Заменимые аминокислоты
Заменимыми аминокислотами называются те, которые могут быть синтезированы организмом. У вас может возникнуть следующий вопрос: «Если они вырабатываются в организме, тогда зачем мы должны принимать их дополнительно?». Дело в том, что во время физических упражнений, после того как энергия в виде углеводов исчерпана, организм начинает искать другие источники питания. Аминокислоты могут выступать в качестве такого источника, чтобы обеспечить мышцы всем необходимым для продолжения тренировки. Однако организм часто не способен достаточно быстро вырабатывать аминокислоты для удовлетворения возросших во время тренировки потребностей, потому мы должны потреблять их в большем количестве независимо от того, являются они заменимыми или нет.
Аланин
Аланин – одно из простейших органических соединений с точки зрения химической структуры, которое классифицируется как неполярная аминокислота. Аланин играет ключевую роль в глюкозо-аланиновом цикле между печенью и тканями организма. Проще говоря, он вступает в реакцию в тканях, чтобы образовать пируват, а затем глюкозу для использования ее в качестве источника энергии.
Глицин
Глицин – самая маленькая из всех аминокислот, которая связана с выработкой коллагена, а также пролина и лизина. Помимо этого она выступает в качестве нейромедиатора в спинном мозге, стволе головного мозга и сетчатке.
Аспарагиновая кислота
Эта аминокислота участвует в цикле мочевины в организме, а также в процессе, который называется глюконеогенезом (метаболический путь, приводящий к образованию глюкозы). Помимо этого аспарагиновая кислота действует как нейромедиатор, стимулирующий определенные рецепторы в нервной системе.
Аспарагин
Аспарагин необходим для нормальной работы нервной системы, а также он играет важную роль в синтезе аммиака.
Полузаменимые или условнозаменимые аминокислоты
Эти аминокислоты могут вырабатываться организмом в определенном количестве, однако в некоторых обстоятельствах этого количества недостаточно для нормального физиологического функционирования, например во время болезни или при интенсивных тренировках.
Серин
Серин – это протеиногенная аминокислота, которая выполняет ряд биологических функций в организме. Он играет важную роль в метаболизме, ферментативных реакциях и работе мозга.
Аргинин
Аргинин является прекурсором оксида азота. Он уменьшает время восстановления после травм, ускоряет заживление поврежденных тканей и способствует снижению и стабилизации артериального давления.
Тирозин
Тирозин – это протеиногенная аминокислота, которая играет важную роль в передаче сигналов в клетках.
Пролин
Эта аминокислота обладает исключительно жесткой структурой, которая используется для синтеза коллагена, необходимого для поддержания здоровья волос, кожи и ногтей.
Орнитин
Орнитин играет ключевую роль в биосинтезе мочевины, а также, как предполагается, предотвращает появление усталости во время тренировок. Цикл мочевины – это ряд биохимических процессов, в результате которых образуется мочевина для выведения аммиака из организма.
Глутамин
Глутамин является одной из самых популярных полузаменимых аминокислот среди спортсменов, которая участвует в регуляции кислотности в почках, создании клеточной энергии и стимулировании мышечного метаболизма.
Цистеин
Цистеин играет важную роль в ферментативных реакциях в организме. Считается, что он принимает участие в связывании металлов, а также является предшественником определенных антиоксидантов.
Польза и применение аминокислот
Теперь разберемся для чего нужны аминокислоты и для достижения каких целей они эффективны. Аминокислоты являются неотъемлемой частью нашего организма и тех процессов, которые в нем ежедневно происходят. Поддержание должного баланса аминокислот путем употребления добавок продемонстрировало большую пользу для организма от стимулирования мышечного роста до улучшения функций иммунной системы.
Мышечный анаболизм, снижение мышечной усталости и помощь в восстановлении мышц
Самая большая польза добавок с аминокислотами заключатся в их способности стимулировать мышечный анаболизм, восстанавливать мышцы и предотвращать появления мышечной усталости.
Лейцин, изолейцин, валин, аспарагин, аспарагиновая кислота и глутамин – это те 6 аминокислот, которые метаболизируются в мышцах в состоянии покоя. Они поддерживают многочисленные метаболические процессы, например, играют основополагающую роль субстратов для синтеза белка и образования энергии, а также являются предшественником глутамина и аланина.
В течение первых 10 минут физических упражнений в организме происходит реакция с участием фермента аланинаминотрансфераза с целью поддержания высокого уровня определенных аминокислот во время тренировки. Промежуточные соединения, которые образуются в результате этой реакции, могут вызывать появление усталости. Однако глутамин выполняет ряд функций в организме, которые позволяют использовать его в качестве источника питания, поэтому глутаминовые добавки способны повышать мышечную энергию и уровень мышечного метаболизма во время тренировок.
Эти полезные свойства добавок с аминокислотами делают их идеальными не только для бодибилдеров, но и для бегунов, спринтеров, а также для людей, ведущих активный образ жизни.
В 2000 году был проведен эксперимент с целью определить реакцию мышечного белка на прием аминокислот. Шесть мужчин и женщин употребляли напиток, содержащий 6 г незаменимых аминокислот или напиток-плацебо, спустя 1 час после тренировки. У тех, кто принимал аминокислоты, наблюдалось увеличение уровня фенилаланина, чего не происходило среди тех, кто принимал плацебо. Это увеличение вызывало анаболический отклик в мышцах, поэтому был сделан вывод о том, что аминокислоты стимулируют белковый анаболизм и синтез белка в мышцах.
Кроме того, в 2003 году в одном из научных обзоров было сказано, что увеличенная концентрация лейцина в организме способна стимулировать синтез мышечного белка при катаболическом состоянии, вызванном ограничениями в пище или утомительными тренировками.
Аминокислоты для похудения
Аминокислоты полезны не только для тех, кто хочет нарастить мышцы и улучшить их восстановление, но они также показаны как средство, способствующее избавлению от лишнего веса. В одном из исследований наблюдались 2 группы людей, желающих похудеть и изменить состав тела. Первая группа использовала диету с высоким содержанием аминокислот, а вторая – с низким.
Спустя 16 дней обнаружилось, что группа, принимавшая большее количество аминокислот, потеряла значительно больше жира и меньше мышечной массы, чем другая. В целом, данные свидетельствуют о том, что диета с повышенным содержанием белка и аминокислот и низким содержанием углеводов обеспечивает бо́льшую потерю жира, сохраняя при этом в организме белок.
Диабет
Сахарный диабет – это заболевание, при котором организм не в состоянии эффективно регулировать уровень сахара в крови и вырабатывать инсулин. Когда мы потребляем углеводы, уровень глюкозы в организме возрастает. При диабете организм не способен должным образом вырабатывать инсулин, чтобы вернуть уровень сахара в норму, в результате чего развивается гипергликемия. Аминокислоты положительно влияют на уровень сахара в крови. Например, аргинин является предшественником оксида азота, передающего вещества, которое оказывает прямое влияние на чувствительность к инсулину.
Воспаление и артрит
Еще одно полезное свойство аминокислот заключается в том, что они могут снижать активность воспалительных процессов в организме. В ходе одного исследования, проведенного в 1973 году, было доказано, что эфиры аминокислот и серосодержащие аминокислоты, в том числе цистеин и метионин, являются эффективными противовоспалительными агентами, которые способны уменьшать последствия отеков и анафилактического шока, и даже снижать воспаление и улучшать состояние при адъювант-индуцированном артрите.
Иммунная система
Хотя это может являться новостью для вас, но дефицит пищевого белка или аминокислот ослабляет функции иммунной системы и увеличивает восприимчивость к болезням. В частности, современные исследования показывают, что аргинин, глутамин и цистеин играют важную роль в работе иммунной системы. Например, эти аминокислоты участвуют в активации различных лимфоцитов, естественных клеток-киллеров и макрофагов, вмешиваются в редокс-регуляцию клеточных функций, экспрессию генов и пролиферацию лимфоцитов, а также влияют на выработку антител, цитокинов и других цитотоксичных субстанций. Сегодня ученые приходят к выводу, что добавки, содержащие определенный набор аминокислот, могут улучшить состояние иммунной системы и снизить уровень заболеваемости и смертности.
Рождаемость
Недавние исследования доказывают, что добавки с аминокислотами способны поднять уровень рождаемости. Например, в одном из таких исследований участвовали 132 мужчины с нарушениями фертильности. В течение 3 месяцев они принимали добавки с аминокислотами и микроэлементами. В качестве контрольной выступала группа из 73 мужчин с пониженной плодовитостью (субфертильностью), которые принимали плацебо. Все результаты исследования испытуемой группы показали значительное улучшение в области зачатия, по сравнению с контрольной группой. В течение 6 месяцев после завершения эксперимента в группе мужчин принимавших добавки было зафиксировано 34 случая зачатия.
Надеюсь, у вас больше не осталось вопросов зачем нужны аминокислоты, если есть, всегда можно задать вопрос в комментариях.
Добавки с аминокислотами
Если вы получаете все необходимые питательные вещества с пищей, то добавки могут вам не понадобиться. Однако стоит помнить о том, что во время тренировок потребность организма в аминокислотах повышается, поэтому если вы много тренируетесь и хотите нарастить мышцы или похудеть, то, скорее всего добавки будут вам необходимы. Вариантов аминокислот множество, зайдите в любой магазин, они могут быть в порошковой форме, в виде таблеток или капсул.
Аминокислоты в порошке
Аминокислоты в форме порошка выпускаются с различными вкусами, поэтому вы легко можете их добавлять в ваш любимый сок или воду.
Аминокислоты в таблетках
У вас нет ни минуты свободного времени и нужно срочно принять суточную дозу аминокислот? Добавки в форме таблеток идеально подходят для таких ситуаций.
Имейте ввиду, что роль аминокислот в спортивном питании очень велика, чем их больше, тем лучше. Нет смысла брать высокоуглеводистый гейнер, проще купить кило сахара и размешать его с протеином, выйдет дешевле.
Как принимать аминокислоты?
Добавки с аминокислотами лучше всего принимать утром, до тренировки, после тренировки и перед сном, чтобы снизить мышечную усталость и максимизировать мышечный анаболизм и восстановление.
Как правильно принимать аминокислоты того или иного вида, всегда указано на банке. Например, BCAA лучше всего принимать утром после пробуждения, до и после тренировки. Комплексные аминки употребляйте между основными приемами пищи, а также до и после тренировки. Для правильного потребления остальных видов, необходимо учитывать какие еще добавки вы потребляете.
Заключение
Надеемся, что статья оказалась для вас полезной, и вы ответили на вопрос, нужны ли вам добавки с аминокислотами. Они являются жизненно необходимыми во время тренировок, а также если вы не получаете аминокислоты в достаточном для организма количестве из пищи. Добавки с аминокислотами помогут вам предотвратить травмы и достичь своих целей в фитнесе.
Аминокислоты – что это такое? Для чего нужны аминокислоты?
В современном мире на рынке спортивного питания можно найти множество различных добавок, которые помогут вам в достижении той или иной цели. На сегодняшний день, самыми популярными добавками являются: аминокислоты и протеин. О протеине мы уже говорили, теперь пришло время разобрать аминокислоты! Что это такое? Для чего нужны аминокислоты? Кому они нужны и какие есть виды аминокислот?
Аминокислоты – это вещества, которые образуют белок в организме. Они являются ключевым компонентом в нашей жизнедеятельности, так как все живые организмы нуждаются в белках. Данные вещества можно получить из обычной пищи (мясо, рыба, яйца, творог …), или из специальных добавок.
Для чего нужны аминокислоты?
Аминокислоты имеют множество функций в организме. Вот некоторые из них: рост мышечной массы, восстановление, выработка гормонов, выработка антител, выработка ферментов, укрепление иммунной системы, предотвращение катаболизма, выполняют роль нейромедиаторов и т.д.
Данные вещества завоевали большую популярность в сфере бодибилдинга и фитнеса. И это не удивительно, так как с их помощью можно ускорить рост мышечной массы и процесс похудения, а так же сохранить набранные мышцы во время сушки.
Вот, несколько самых важных эффектов:
- Больше энергии. Аминокислоты метаболизируются по иному пути в отличии от углеводов, поэтому организм во время тренинга может получать гораздо больше энергии, если аминокислотный пул заполнен
- Повышенный синтез белка. Аминокислоты стимулируют секрецию анаболического гормона — инсулина, а также активируют mTOR, два этих механизма способны запускать мышечный рост. Сами аминокислоты используются в качестве строительного материала для белков
- Предотвращение катаболизма. Аминокислоты обладают выраженным антикатаболическим действием, которое особенно необходимо после тренировки, а также во время цикла похудения или сушки
- Помогают быстрее сжигать подкожный жир. Аминокислоты способствуют сжиганию жира за счет экспрессии лептина в адипоцитах посредством mTOR
Кому нужны аминокислоты?
Данная добавка подойдет тем мужчинам и женщинам, которые подвергаются тяжелым физическим нагрузкам (бодибилдинг, фитнес, бокс, спринт, единоборства). Аминокислоты помогут вам лучше восстанавливаться, быстрее наращивать сухую мышечную массу и сжигать подкожный жир.
Какие есть виды аминокислот?
По своей сущности аминокислоты можно разделить на два вида: заменимые и незаменимые. Заменимые – это те вещества, которые способны самостоятельно вырабатываться в нашем организме. Незаменимые – это те вещества, которые не способны самостоятельно вырабатываться в нашем организме. Именно поэтому, очень важно, что бы данные незаменимые аминокислоты попадали к нам с пищей или из спортивных добавок.
Насчитывают около 28 различных аминокислот (9 – незаменимых и 19 – заменимых).
Незаменимые аминокислоты:
Валин – является важнейшим компонентом, который помогает восстанавливать разрушенные мышечные ткани и поддерживает нормальный обмен азота в человеческом теле. Препятствует снижению уровня серотонина и повышает мышечную координацию. Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники валина в питании: говядина, куриное филе, филе лосося, куриные яйца, грецкие орехи.
Гистидин – важный компонент, который помогает восстанавливать разрушенные мышечные ткани. Присутствует в миелиновых оболочках, которые защищают нервные клетки. Так же, данная аминокислота охраняет наше тело от повреждающего действия радиации и выводит тяжелые металлы. Из гистидина синтезируется карнозин – мощный мышечный антиоксидант. Лучшие источники гистидина в питании: тунец, лосось, куриное филе, арахис, чечевица.
Изолейцин – одна из важнейших незаменимых аминокислот, которая участвует в синтезе гемоглобина и нормализует уровень сахара в крови. Изолейцин нормализует процессы энергообеспечения и укрепляет синтез эпидермиса (наружный слой кожи). Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники изолейцина в питании: куриные яйца, сыр, рыба, индейка, куриное филе.
Лейцин – важнейший компонент для укрепления и поддержания иммунной системы на должном уровне. Основные функции лейцина: нормализует метаболические процессы, подавляет разрушение белковых молекул, усиливает синтез белка, подавляет распад глюкозы, повышает секрецию инсулина и нормализует водный обмен в нашем теле. Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники лейцина в питании: говядина, телятина, куриное филе, рыба, филе индейки, творог, молоко, арахис.
Лизин – принимает участие в костном формировании и положительно влияет на усвоение кальция. Так же, он принимает участие в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Лизин положительно влияет на работу сердца, понижает уровень триглицеридов в сыворотке крови и является аминокислотой противовирусного действия. Лучшие источники лизина в питании: куриные яйца, говядина, телятина, баранина, куриное филе, филе индейки, фасоль, горох, треска.
Метионин – одна из важнейших незаменимых аминокислот, которая участвует в жировом обмене и положительно влияет на синтез таурина и цистеина. Так же, метионин обладает такими положительными функциями, как: улучшение пищеварения, улучшение мышечной выносливости, понижает уровень плохого холестерина, положительно влияет на рост волос, положительно влияет на печень, защищает от повреждающего действия радиации и выводит тяжелые металлы. Лучшие источники метионина в питании: куриное филе, филе индейки, телятина, творог, бобовые, арахис.
Треонин – поддерживает стабильность белкового метаболизма в теле человека. Принимает участие в синтезе коллагена и эластина. Препятствует отложению жира в печени. Положительно влияет на сердечно – сосудистую систему и ЦНС. Лучшие источники треонина в питании: куриное филе, филе индейки, говядина, телятина, овсянка, гречка, рис, грибы.
Триптофан – важнейшая аминокислота, которая принимает участие в синтезе серотонина. Он подымает настроение, подавляет депрессию и избавляет от бессонницы. Женщинам следует обратить должное внимание на эту аминокислоту, так как она облегчает предменструальный синдром. Лучшие источники триптофана в питании: сыр, рыба, мясо, бобовые, грибы, творог, кедровые орехи, арахис.
Фенилаланин – улучшает настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Он входит в состав белков организма, которые составляют мышцы, сухожилия, связки и другие органы. Лучшие источники фенилаланина в питании: мясо, куриные яйца, бобовые, орехи.
Заменимые аминокислоты:
Аланин – необходимая аминокислота для нашего организма, которая принимает участие в метаболизме глюкозы. Она обладает такими положительными свойствами, как: повышает сокращение мышц, служит как источник энергии для мышц и ЦНС, нормализует уровень сахара в крови и стимулирует иммунную систему. Лучшие источники аланина в питании: мясо (телятина, говядина, птица), молоко, сыр.
Аргинин – имеет множество положительных свойств, что делает данную аминокислоту очень ценной и востребованной. Положительные свойства аргинина: препятствует росту опухолей, способствует дезинтоксикационным процессам в печени, нормализует азотный баланс, усиливает выработку ГР, усиливает выработку сперматозоидов у мужчин, усиливает выработку инсулина, улучшает кровоток в мышцах и повышает иммунитет. Лучшие источники аргинина в питании: свинина, куриное филе, филе лосося, куриные яйца, кедровые орехи, грецкие орехи, тыквенные семечки.
Аспарагин – нормализует работу центральной нервной системы. Повышает иммунитет за счет увеличения продукции иммуноглобулинов и антител. Лучшие источники аспарагина в питании: молоко, сыворотка, мясо, птица, морепродукты, спаржа, бобовые, орехи.
Цитруллин – данная аминокислота не столько важна для наших мышц, как для организма. Он способствует повышению энергообеспечения, укрепляет иммунную систему, усиливает выносливость и способствует улучшению эректильной функции. Лучшие источники цитруллина в питании: арбуз, арахис, соевые бобы.
Цистеин – аминокислота, которая принимает важнейшее участие в процессах формирования тканей кожи, ногтей и волос. Так же, он принимает участие в образовании коллагена и улучшает эластичность кожи. Цистеин является мощнейшим антиоксидантом, который обезвреживает различные токсичные вещества и защищает организм от радиации. Лучшие источники цистеина в питании: куриное филе, филе индейки, свинина, куриные яйца, молоко, красный перец, лук, чеснок.
Цистин – аминокислота, которая принимает важнейшее участие в процессах формирования тканей кожи, ногтей и волос. Играет крайне важную роль в формировании и поддержании третичной структуры белков и пептидов и, соответственно, их биологической активности. Лучшие источники цистина в питании: мясо, рыба, соя, овес, пшеница.
Диметилглицин – входит в состав некоторых гормонов, нейромедиаторов и ДНК. Лучшие источники диметилглицина в питании: мясо, семечки, зерна, бобовые, печень.
Глютамин – необходимая аминокислота для нормального роста мышечной массы. Положительные свойства глютамина: укрепляет иммунитет, принимает участие в синтезе белка в мышечных тканях, является антикатаболиком (подавляет гормон – кортизол), ускоряет восстановительные процессы, уменьшает шанс получить перетренированность, нормализует уровень сахара в крови и повышает работоспособность головного мозга. Лучшие источники глютамина в питании: говядина, курица, рыба, куриные яйца, молочка, капуста, свекла, бобы, шпинат, петрушка.
Глутатион – является антиоксидантом, который положительно влияет на жировой обмен и предотвращает возникновения атеросклероза. Так же, он защищает организм от токсинов, свободных радикалов, болезней и вирусов. Лучшие источники глутатиона в питании: лук, чеснок, капуста, авокадо, орехи, семечки, птица, яичные желтки, шпинат, сельдерей.
Глицин – принимает участие в синтезе нуклеиновых кислот, желчных кислот и заменимых аминокислот. Помимо этого, он обладает такими полезными функциями, как: восстанавливает поврежденные ткани, положительно влияет на ЦНС, повышает настроение, улучшает качество сна, обладает противовоспалительным действием. Лучшие источники глицина в питании: мясо, рыба, молочка, куриные яйца.
Гамма — аминомасляная кислота (GABA) – важнейшая аминокислота, которая является нейромедиатором центральной нервной системы и головного мозга. GABA завоевала большую популярность в бодибилдинге из-за таких положительных эффектов, как: усиленная выработка гормона роста, усиленная жесткость мускулатуры, повышенное сжигание жира, улучшение качества сна, обладает успокаивающим эффектом (предотвращает перевозбуждение нервных клеток). Лучшие источники GABA в питании: листья чая и кофе, нитевидные грибы, сок растений рода крестоцветных.
Глутаминовая кислота – служит нейромедиатором, который передает импульсы в ЦНС. Положительно влияет на углеводный обмен и может служить источником энергии для головного мозга. Глутаминовая кислота принимает участие в синтезе нуклеиновых кислот и повышает проницаемость мышечных клеток для ионов калия. Лучшие источники глутаминовой кислота в питании: коровье молоко, сыр пармезан, мясо цыпленка, утка, говядина, свинина, треска, макрель, форель, зеленый горошек.
Гистамин – служит нейротрансмиттером в центральной нервной системе. Улучшает половое влечение и повышается проницаемость кровеносных сосудов. Лучшие источники гистамина в питании: молоко, творог, овсянка, печень, птица, куриные яйца.
Орнитин – завоевал большую популярность в бодибилдинге из-за таких положительных эффектов, как: усиленная выработка гормона роста, положительное влияние на печень, повышенное сжигание жира, увеличение секреции инсулина, обладает антикатаболическим эффектом. Лучшие источники орнитина в питании: куриные яйца, мясо, рыба, молочные продукты.
Пролин – положительно влияет на состояние кожи и сердечно – сосудистую систему, укрепляет суставы и связки. Лучшие источники пролина в питании: ржаной хлеб, рис, говядина, баранина, сельдь, тунец, сыр.
Серин – положительно влияет на жировой обмен и иммунную систему. Лучшие источники серина в питании: тыквенные семечки, орехи, куриные яйца, молоко, птица, сельдь, скумбрия, баранина.
Таурин – необходим для нормального обмена натрия, калия, кальция и магния. Оказывает положительное влияние на головной мозг и улучшает обменные процессы. Лучшие источники таурина в питании: мясо, рыба, устрицы, куриные яйца, молоко.
Тирозин – принимает участие в выработке мелатонина, положительно влияет на щитовидную железу и гипофиз, подавляет аппетит. Тирозин является аминокислотой творчества (повышает творческий процесс и позволяет думать масштабнее). Лучшие источники тирозина в питании: миндаль, авокадо, бананы, семечки тыквы, кунжут.
Карнитин – можно отнести к аминокислотам, так как он имеет схожую химическую структуру. Он помогает перерабатывать жирные кислоты в энергию. Положительно влияет на работу сердца, печени. Карнитин повышает выносливость, улучает количество и качество спермы, замедляет старение, понижает уровень плохого холестерина. Лучшие источники карнитина в питании: говядина, баранина, молочные продукты, печень, телятина, индейка, свинина.
Давайте еще раз вкратце пройдемся по основным вопросам:
№1) Аминокислоты – что это такое?
Вещества, которые образуют белок в организме. Они являются ключевым компонентом в нашей жизнедеятельности, так как все живые организмы нуждаются в белках.
№2) Для чего нужны аминокислоты?
Они имеют множество функций в организме. Вот некоторые из них: рост мышечной массы, восстановление, выработка гормонов, выработка антител, выработка ферментов, укрепление иммунной системы, предотвращение катаболизма, выполняют роль нейромедиаторов и т.д.
№3) Кому нужны аминокислоты?
Данная добавка подойдет тем мужчинам и женщинам, которые подвергаются тяжелым физическим нагрузкам (бодибилдинг, фитнес, бокс, спринт, единоборства).
№4) Какие есть виды аминокислот?
По своей сущности аминокислоты можно разделить на два вида: заменимые и незаменимые. Насчитывают около 28 различных аминокислот (9 – незаменимых и 19 – заменимых).
Незаменимые:
- Валин
- Гистидин
- Изолейцин
- Лейцин
- Лизин
- Метионин
- Треонин
- Триптофан
- Фенилаланин
Заменимые:
- Аланин
- Аргинин
- Аспарагин
- Цитруллин
- Цистеин
- Цистин
- Диметилглицин
- Глютамин
- Глутатион
- Глицин
- Гамма — аминомасляная кислота (GABA)
- Глутаминовая кислота
- Гистамин
- Орнитин
- Пролин
- Серин
- Таурин
- Тирозин
- Карнитин
P.S. Так же, рекомендую вам выделить немного своего драгоценного времени, на просмотр данного видео.
С уважением, Сергей Гарбарь
список, формулы, характеристики. Роль аминокислот в организме. В каких продуктах содержатся аминокислоты?
Всем известно еще из уроков химии, что аминокислоты являются «кирпичиками» для построения белков. Есть аминокислоты, которые наш организм способен самостоятельно синтезировать, а есть и такие, которые поставляются только извне, вместе с питательными веществами. Рассмотрим аминокислоты (список), их роль в организме, из каких продуктов они к нам поступают.
Роль аминокислот
Наши клетки постоянно имеют потребность в аминокислотах. Белки пищи расщепляются в кишечнике до аминокислот. После этого аминокислоты всасываются в ток крови, где синтезируются новые белки в зависимости от генетической программы и требований организма. Незаменимые аминокислоты, список которых представлен ниже, мы получаем из продуктов. Заменимые организм синтезирует самостоятельно. Кроме того, что аминокислоты – это структурные составляющие белков, они еще и синтезируют разные вещества. Роль аминокислот в организме огромна. Непротеиногенные и протеиногенные аминокислоты – это предшественники азотистых оснований, витаминов, гормонов, пептидов, алкалоидов, ромедиаторов и многих других значительных соединений. К примеру, витамин РР синтезируется из триптофана; гормоны норадреналин, тироксин, адреналин – из тирозина. Пантотеновая кислота образуется из аминокислоты валин. Пролин является защитником клеток от множества стрессов, например окислительного.
Общая характеристика аминокислот
Белками именуются азотосодержащие высокомолекулярные органические соединения, которые создаются из остатков аминокислот, соединяются пептидными связями. По-иному это полимеры, мономерами в которых выступают аминокислоты. В строение белка включено сотни, тысячи аминокислотных остатков, соединяемых пептидными связями. Список аминокислот, которые находятся в природе, достаточно велик, их обнаружено около трехсот. По своей способности вхождения в состав белков аминокислоты подразделяются на протеиногенные («рождающие белок», от слов «протеин» – белок, «генезис» – рождать) и непротеиногенные. В живом организме количество протеиногенных аминокислот относительно небольшое, их всего двадцать. Помимо этих стандартных двадцати, можно встретить в белках модифицированные аминокислоты, они являются производными от обычных аминокислот. К непротеиногенным относятся такие, которые не входят в состав белка. Существуют α, β и γ. Все белковые аминокислоты — это α-аминокислоты, они имеют характерную структурную особенность, которую можно пронаблюдать на представленном ниже изображении: наличие аминной и карбоксильной групп, они связаны в α-положении атомом углерода. Кроме этого, каждая аминокислота обладает своим радикалом, неодинаковым со всеми по структуре, растворимости и электрическому заряду.
Виды аминокислот
Список аминокислот разделяется на три основных вида, к ним относятся:
• Незаменимые аминокислоты. Именно эти аминокислоты организм не может синтезировать сам в достаточных количествах.
• Заменимые аминокислоты. Этот вид организм может самостоятельно синтезировать, используя другие источники.
• Условно-незаменимые аминокислоты. Организм синтезирует их самостоятельно, но в недостаточных для своих нужд количествах.
Незаменимые аминокислоты. Содержание в продуктах
Незаменимые аминокислоты есть возможность получать организму только из пищевых продуктов или из добавок. Их функции просто незаменимы при формировании здоровых суставов, красивых волос, крепких мышц. В каких продуктах содержатся аминокислоты данного вида? Перечень приведен ниже:
• фенилаланин – молочные продукты, мясные, проросшая пшеница, овес;
• треонин – молочные продукты, яйца, мясо;
• лизин – бобовые, рыба, мясо птицы, проросшая пшеница, молочные продукты, арахис;
• валин – зерновые, грибы, молочные продукты, мясо;
• метионин – арахис, овощи, бобовые, нежирное мясо, творог;
• триптофан – орехи, молочные продукты, мясо индейки, семечки, яйца;
• лейцин – молочные продукты, мясо, овес, проросшая пшеница;
• изолейцин – мясо птицы, сыр, рыба, проросшая пшеница, семечки, орехи;
• гистидин – проросшая пшеница, молочные продукты, мясо.
Функции незаменимых аминокислот
Все эти «кирпичики» отвечают за важнейшие функции человеческого организма. Человек не задумывается об их количестве, но при их недостатке работа всех систем сразу начинает ухудшаться.
Лейцин формулу химическую имеет следующую — HO₂CCH(NH₂)CH₂CH(CH₃)₂. В организме человека данная аминокислота не синтезируется. Включается в состав природных белков. Используется при лечении анемии, болезней печени. Лейцина (формула — HO₂CCH(NH₂)CH₂CH(CH₃)₂) для организма в сутки требуется в количестве от 4 до 6 граммов. Данная аминокислота является составляющей многих БАДов. Как пищевую добавку его кодируют Е641 (усилитель вкуса). Лейцин контролирует уровень глюкозы крови и лейкоцитов, при их повышении он подключает иммунитет для ликвидации воспалений. Данная аминокислота играет большую роль в формировании мышц, сращивании костей, заживлении ран, а также в обмене веществ.
Аминокислота гистидин – важный элемент в период роста, при восстановлении после травм и болезней. Улучшает состав крови, работу суставов. Помогает усваиваться меди и цинку. При нехватке гистидина ослабляется слух, воспаляются мышечные ткани.
Аминокислота изолейцин участвует ввыработке гемоглобина. Повышает выносливость, энергичность, контролирует уровень сахара в крови. Участвует в формировании мышечной ткани. Изолейцин снижает воздействие факторов стресса. При его недостатке возникают чувства тревоги, страха, беспокойства, повышается утомляемость.
Аминокислота валин — несравненный источник энергии, возобновляет мышцы, поддерживает их в тонусе. Валин важен для восстановления клеток печени (например, при гепатите). При нехватке этой аминокислоты нарушается координация движений, а также может повышаться чувствительность кожи.
Метионин — незаменимая аминокислота для работы печени, пищеварительной системы. В ней содержится сера, которая помогает предотвратить заболевания ногтей и кожи, помогает в росте волос. Метионин борется с токсикозом у беременных. При его дефиците в организме снижается гемоглобин, в клетках печени накапливается жир.
Лизин – эта аминокислота является помощником в усвоении кальция, способствует в формировании и укреплении костей. Улучшает структуру волоса, вырабатывает коллаген. Лизин – анаболик, позволяющий наращивать мышечную массу. Участвует в профилактике вирусных заболеваний.
Треонин – повышает иммунитет, улучшает работу ЖКТ. Участвует в процессе создания коллагена и эластина. Не дает откладываться жиру в печени. Играет роль в формировании зубной эмали.
Триптофан является главным ответчиком за наши эмоции. Всем знакомый гормон счастья серотонин вырабатывается именно триптофаном. При его норме поднимается настроение, нормализуется сон, восстанавливаются биоритмы. Благотворно сказывается на работе артерий и сердца.
Фенилаланин участвует в процессах выработки норадреналина, который отвечает за бодрствование организма, активность и энергию. Влияет также на уровень эндорфинов – гормонов радости. Дефицит фенилаланина может привети к развитию депрессии.
Заменимые аминокислоты. Продукты
Данные виды аминокислот вырабатываются в организме в процессе метаболизма. Извлекаются они из других органических веществ. Организм автоматически может переключаться для создания необходимой аминокислоты. В каких продуктах содержатся аминокислоты заменимые? Список приведен ниже:
• аргинин – овес, орехи, кукуруза, мясо, желатин, молочные продукты, кунжут, шоколад;
• аланин – морепродукты, яичные белки, мясо, соя, бобовые, орехи, кукуруза, коричневый рис;
• аспарагин – рыба, яйца, морепродукты, мясо, спаржа, помидоры, орехи;
• глицин – печень, говядина, желатин, молочные продукты, рыба, яйца;
• пролин – фруктовые соки, молочные продукты, пшеница, мясо, яйца;
• таурин – молочные, рыбные белки; вырабатывается в организме из витамина В6;
• глутамин – рыба, мясо, бобовые, молочные продукты;
• серин – соя, пшеничная клейковина, мясные, молочные продукты, арахис;
• карнитин – мясные и субпродукты, молочные, рыба, красное мясо.
Функции заменимых аминокислот
Глутаминовая кислота, формула химическая которой — C₅H₉N₁O₄, в живых организмах включена в состав белков, есть в некоторых низкомолекулярных веществах, а также в сводном виде. Большая роль предназначена для участия в азотистом обмене. Отвечает за активность мозга. Глутаминовая кислота (формула C₅H₉N₁O₄) при длительных нагрузках переходит в глюкозу и помогает вырабатывать энергию. Глутамин играет большую роль в повышении иммунитета, восстанавливает мышцы, создает гормоны роста, ускоряет процессы метаболизма.
Аланин – важнейший источник энергии для нервной системы, мышечной ткани и головного мозга. Вырабатывая антитела, аланин укрепляет иммунитет, также он участвует в метаболизме органических кислот и сахаров, в печени превращается в глюкозу. Благодаря аланину поддерживается кислотно-щелочное равновесие.
Аспарагин относится к заменимым аминокислотам, его задача — при больших нагрузках снижать образование аммиака. Помогает сопротивляться усталости, преобразовывает углеводы в энергию мышц. Стимулирует иммунитет за счет продукции антител и иммуноглобулинов. Аспартовая кислота балансирует процессы совершающиеся в центральной нервной системе, она препятствует излишнему торможению и чрезмерному возбуждению.
Глицин – аминокислота, обеспечивающая кислородом процессы образования клеток. Глицин необходим для нормализации уровня сахара в крови, артериального давления. Участвует в расщеплении жиров, в выработке гормонов, ответственных за иммунную систему.
Карнитин – важный транспортный агент, который перемещает жирные кислоты в митохондриальный матрикс. Карнитин способен повысить эффективность антиоксидантов, окисляет жиры, способствует выведению их из организма.
Орнитин является производителем гормонов роста. Эта аминокислота необходима для работы иммунной системы и печени, участвует в выработке инсулина, в расщеплении жирных кислот, в процессах мочеобразования.
Пролин — участвует в производстве коллагена, который необходим для соединительных тканей и костей. Поддерживает и укрепляет сердечную мышцу.
Серин – производитель клеточной энергии. Помогает запасать мышцам и печени гликоген. Участвует в укреплении иммунной системы, обеспечивая при этом ее антителами. Стимулирует функции нервной системы и памяти.
Таурин благоприятно влияет на сердечно-сосудистую систему. Позволяет контролировать эпилептические приступы. Играет не последнюю роль в контроле за процессами старения. Снижает утомляемость, освобождает организм от свободных радикалов, понижает уровень холестерина и давление.
Условнонезаменимые аминокислоты
Цистеин способствует ликвидации токсических веществ, принимает участие в создании мышечной ткани и кожи. Цистеин является естественным антиоксидантом, очищает организм от химических токсинов. Стимулирует работу белых кровяных телец. Содержится в таких продуктах, как мясо, рыба, овес, пшеница, соя.
Аминокислота тирозин помогает бороться со стрессами и усталостью, снижает тревожность, повышает настроение и общий тонус. Тирозин оказывает антиоксидантное действие, что позволяет связывать свободные радикалы. Играет важную роль в процессе метаболизма. Содержится в мясных и молочных продуктах, в рыбе.
Гистидин помогает восстанавливаться тканям, способствует их росту. Содержится в гемоглобине. Помогает в лечении аллергий, артритов, анемии и язв. При дефиците этой аминокислоты может ослабиться слух.
Аминокислоты и белок
Все белки создаются при помощи пептидных связей аминокислотами. Сами белки, или протеины – это высокомолекулярные соединения, в составе которых есть азот. Само понятие «протеин» было впервые введено еще в 1838 году Берцелиусом. Слово происходит от греческого «первичный», это и означает лидирующее место протеинов в природе. Белки дают жизнь всему живому на Земле, от бактерий до сложного человеческого организма. В природе их намного больше, чем всех остальных макромолекул. Белок – фундамент жизни. От массы тела белки составляют 20%, а если взять сухую массу клетки, то 50%. Наличие огромного количества белков объясняется существованием различных аминокислот. Они, в свою очередь, взаимодействуют и создают при этом полимерные молекулы. Самым выдающимся свойством белков является их способность создавать собственную пространственную структуру. В химическом составе белка постоянно содержится азот — приблизительно 16%. Развитие и рост организма полностью зависят от функций белковых аминокислот. Белки не могут быть заменены другими элементами. Роль их в организме чрезвычайно важна.
Функции белков
Необходимость присутствия белков выражается в следующих важнейших функциях этих соединений:
• Белок играет главную роль в развитии и росте, являясь строительным материалом для новых клеток.
• Белок управляет процессами метаболизма во время высвобождения энергии. Например, если еда состояла из углеводов, то скорость метаболизма возрастает на 4%, а если из белков – то на 30%.
• Благодаря гидрофильности белки регулируют в организме водный баланс.
• Улучшают работу иммунной системы путем синтеза антител, а они, в свою очередь, устраняют угрозы болезней и инфекции.
Белок в организме – это важнейший источник энергии и строительный материал. Очень важно соблюдать меню и ежедневно употреблять продукты с содержанием белка, они дадут необходимую жизненную энергию, силу и защиту. Все вышеперечисленные продукты содержат в своем составе белок.
Аминокислоты — www.calorizator.ru
Валин (Val, V)
Немного истории
Большинство аминокислот были открыты после во второй половине двадцатого века во время поиска новых антибиотиков из грибков, семян, фруктов и жидкостей животных. Первая аминокислота – аспарагин была открыта в 1806 году. Она была выделена из сока спаржи французским химиком Луи-Никола Вокленом и помощником Пьером Жаном Робике. Чуть позже, был получен лейцин из сыра и творога.
Что такое аминокислоты
С точки зрения биохимии, аминокислоты – это органические вещества, состоящие из углеродного скелета, аминной и карбоксильной группы. Благодаря последним двум радикалам, аминокислоты обладают уникальной способностью – проявлять свойства как кислот, так и щелочей.
Протеины – это 20 % человеческого тела, они принимают участие во всех биохимических процессах, а аминокислоты – это «строительный материал» для них. Клетки и ткани человеческого организма состоят преимущественно из аминокислот, ключевая роль которых – транспортировка и хранение питательных веществ.
Аминокислоты жизненно необходимы организму, без них невозможен синтез гормонов, пигментов, витаминов и пуринов. Далеко не все аминокислоты человеческий организм, в отличие от некоторых микроорганизмов и растений, может синтезировать самостоятельно, их необходимо получать из продуктов питания.
На сегодняшний день известно около 500 аминокислот, встречающихся в природе. Но только 20 из них, так называемых стандартных, протеиногенных аминокислот. Они, собственно, и составляют полипептидную цепь, содержащую генетический код.
Таблица. Стандартные протеиногенные аминокислоты
Аминокислота | Аббревиатура | Источник |
Глицин | Gly, G | Желатин |
Лейцин | Leu, L | Мышечные волокна |
Тирозин | Tyr, Y | Казеин |
Серин | Ser, S | Шёлк |
Глутаминовая кислота | Glu, E | Растительные белки |
Глутамин | Gln, Q |
|
Аспарагиновая кислота | Asp, D | Конглутин, легумин (ростки спаржи) |
Аспарагин | Asn, N | Сок спаржи |
Фенилаланин | Phe, F | Ростки люпина |
Аланин | Ala, A | Фиброин шелка |
Лизин | Lys, K | Казеин |
Аргинин | Arg, R | Вещество рога |
Гистидин | His, H | Стурин, гистоны |
Цистеин | Cys, C | Вещество рога |
Валин | Val, V | Казеин |
Пролин | Pro, P | Казеин |
Гидроксипролин | Hyp, hP | Желатин |
Триптофан | Trp, W | Казеин |
Изолейцин | Ile, I | Фибрин |
Метионин | Met, M | Казеин |
Треонин | Thr, T | Белки овса |
Гидроксилизин | Hyl, hK | Белки рыб |
Существует несколько способов классификации аминокислот, самая популярная – это классификация по способу синтезирования. По ней аминокислоты разделяют на два вида:
- Незаменимые – аминокислоты, которые не синтезируются в человеческом теле;
- Заменимые – те, что человеческий организм способен воспроизводить самостоятельно.
Заменимые и незаменимые аминокислоты
К заменимым, но необходимым человеческому организму, относят следующие аминокислоты: аланин, аспарагин, аспартат, глицин, глутамин, глутамат, пролин, серин, тирозин, цистеин, гидроксипролин, гидроксилизин.
Незаменимыми называют аминокислоты, не способные самостоятельно синтезироваться в организме человека к ним относят: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин, гистидин, аргинин. В организме ребенка также не синтезируется аргинин, по этому его также относят к незаменимым.
В каких продуктах содержатся аминокислоты
Аминокислоты – это составляющие части белка и, соответственно, логичным было бы предположить, что содержатся они именно в белковых продуктах, и это действительно так. Большое количество аминокислот содержится в яйцах, молочных продуктах, мясе и рыбе. Из продуктов растительного происхождения также можно получить аминокислоты незаменимые для организма. Высоко их содержание в сое, чечевице, фасоли и других бобовых. Орехи и семена в большом количестве содержат гистидин, аргинин и лизин, а крупы содержат лейцин, валин и изолейцин.
Ниже приведена таблица, из которой видно из каких продуктов можно получить незаменимые аминокислоты и их роль в организме.
Таблица. Продукты, содержащие незаменимые аминокислоты
Название | В каких продуктах содержится | Роль в организме |
Лейцин | Орехи, овес, рыба, яйца, курица, чечевица | Снижает содержание сахара в крови |
Изолейцин | Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо | Восстанавливает мышечную ткань |
Лизин | Амарант, пшеница, рыба, мясо, большинство молочных продуктов | Принимает участие в усвоении кальция |
Валин | Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые | Принимает участие в обменных процессах азота |
Фенилаланин | Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые | Улучшение памяти |
Треонин | Яйца, орехи, бобы, молочные продукты | Синтезирует коллаген |
Метионин | Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица | Принимает участие в защите от радиации |
Триптофан | Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики | Улучшает и делает сон глубже |
Гистидин (частично-заменимая) | Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка | Принимает участие в противовоспалительных реакциях |
Аргинин(частично-заменимая) | Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис | Способствует росту и восстановлению тканей организма |
Подробнее о каждой аминокислоте вы можете узнать, перейдя на ее страничку.
Наш организм нуждается в аминокислотах ежедневно и, согласно биологическим исследованиям, суточная норма потребления белка составляет от 0.5 до 2 грамм в сутки на 1 килограмм веса. Из разных продуктов белок усваивается организмом по-разному. Считается, что лучше всего усваивается белок полученный из яиц, творога и рыбы.
Аминокислоты в организме человека
Организм человека на 20% состоит из белка – он является главным строительным материалом, для мышечной ткани, всех органов и клеток. Белок – это наша кожа и волосы, клетки крови, мышцы и все остальные системы.
Аминокислоты, в свою очередь, являются строительным материалом для белка. По сути можно сказать, что белок (протеин) состоит из аминокислот.
В организме человека аминокислоты выполняют важнейшие функции: они принимают участие в синтезе гормонов, пигментов и витаминов, играют ключевую роль в транспортировке и хранении питательных веществ.
Вот перечень лишь нескольких, самых важных функций аминокислот в организме:
- В первую очередь аминокислоты нужны для формирования белка, который входит в состав мышечной ткани связок и сухожилий.
- Аминокислоты оптимизируют восстановительные процессы, ускоряют заживление повреждений кожных покровов.
- Аминокислоты очень важны для нормального функционирования головного мозга и нервной системы.
- Важную роль, играют аминокислоты и в образовании ферментов.
- Без аминокислот невозможен нормальный качественный сон.
- Ну и, наконец, аминокислоты влияют на здоровье волос, ногтей и кожи.
Из всех вышеперечисленных пунктов понятно, что аминокислоты, человеку необходимы и получать их нужно в достатке, для нормального функционирования всех систем организма. Ниже мы рассмотрим, что бывает при недостатке аминокислот, их избытке и из каких продуктов можно получить незаменимые аминокислоты.
Нехватка и избыток аминокислот
Наш организм устроен так, что все должно находиться в гармонии и балансе. Поэтому негативные последствия возникают как при нехватке аминокислот, так и при их избытке. Каждая аминокислота выполняет в организме свою функцию, у нее свои задачи, и соответственно часто бывает так, что не хватает в организме не всех аминокислот, а лишь нескольких, чтобы выявить нехватку, существует специальный анализ крови. Также потребуется сдать анализ крови на нехватку витаминов, потому что аминокислоты растворимы и в нашем организме взаимодействуют с витаминами группы В, А, С и Е.
При нехватке аминокислот у человека наблюдаются следующие симптомы:
- Слабость, сонливость.
- Снижение аппетита или полная его потеря.
- Выпадение волос, ухудшение состояния кожи.
- Задержка роста и развития у детей.
- Анемия.
- Снижение иммунитета, и как следствие низкая сопротивляемость к вирусам и инфекциям.
- Избыток аминокислот, также как и их нехватка ведет к нарушениям работы различных систем организма. Как правило негативные последствия от избытка аминокислот возможны только при дефиците селена и недостатке витаминов А, Е, С, В.
При избытке аминокислот в организме, могут возникнуть следующие проблемы: нарушение функции щитовидной железы, гипертония (переизбыток тирозина), проблемы с суставами (переизбыток гистидина), ранняя седина (переизбыток гистидина), повышается риск развития инфарктов и инсультов (переизбыток метионина).
Таблица. Применение аминокислот и их дозировка
Аминокислота | Применение | Дозировка (в качестве биодобавки для спортсменов) | Передозировка; Дефицит |
Гистидин | Лечит артрит, нервную глухоту, улучшает пищеварение, необходим младенцам и детям во время роста | 8-10 мг на 1 кг веса (минимум 1 г в сутки) | Психические расстройства, тревога, шизофрения, подверженность стрессам; Неизвестно. |
Лизин | Лечит герпес, добавляет энергию, способствует производству мышечного белка, борется с усталостью, поддерживает баланс азота в организме, важен для поглощения и сохранения кальция, способствует образованию коллагена | 12 мг на 1 кг веса | Повышение холестерина, диарея, камни в желчном пузыре; Нарушение выработки ферментов, снижение веса, снижение аппетита, ухудшение концентрации. |
Фенилаланин | Лечит депрессии, артрит, нервные расстройства, судороги, снимает напряжение с мышц, важен для производства нейротрансмиттеров серотонина и мелатонина | 1 мг на 1 кг веса | Повышенное артериальное давление, мигрени, тошнота, нарушение работы сердца и нервной системы. Не рекомендуется беременным и диабетикам; Вялость, слабость, задержка роста, нарушение функций печени. |
Метионин | Лечение печени, артрита, депрессий, ускоряет метаболизм жиров и улучшает пищеварение, антиоксидант, предотвращает накопление лишних жиров в сосудах и печени, выводит токсины | 12 мг на 1 кг веса | Возможна при дефиците витаминов группы В. Атеросклероз; Жировое перерождение печени, замедление роста, вялость, отеки, кожные болезни. |
Лейцин | Предотвращает атрофию мышц, природный анаболический агент, способствует заживлению ран и важен для выработки гормона роста | 16 мг на 1 кг веса | Повышает уровень аммиака; Неизвестно. |
Изолейцин | Заживляет раны, высвобождает гормон роста, регулирует сахар в крови, важен для формирования гемоглобина, отвечает за структуру мышц | 10-12 мг на 1 кг веса | Вызывает частое мочеиспускание, осторожно принимать при болезнях почек или печени; Неизвестно. |
Валин | Регулирует баланс азота, восстанавливает и способствует росту мышечной ткани | 16 мг на 1 кг веса | Покалывания кожи, галлюцинации, запрещен людям с болезнями печени или почек; Болезнь «кленового сиропа». |
Треонин | Важен для выработки коллагена, эластина, антител, поддерживает здоровье мышц, стимулирует рост, применяется для лечения психики | 8 мг на 1 кг веса | Неизвестно; Раздражительность, ослабление иммунитета. |
Триптофан | Важен для производства серотонина и мелатонина, необходим в период роста | 3,5 мг на 1 кг веса | Головокружение, мигрени, рвота, диарея; Может послужить причиной развития туберкулеза, рака, диабета, слабоумия. |
Аргинин | Отвечает за восстановление мышц, быстрое заживление ран и травм, выводит шлаки, укрепляет иммунитет | 0,4 мг на 1 кг веса | Болезни поджелудочной железы, печени; Снижение артериального давления, слабость, расстройство пищеварения. |
В зоне риска оказываются люди с генетическими нарушениями в процессе усвоения аминокислот, вегетарианцы, бодибилдеры и люди, которые просто не следят за своим питанием.
Аминокислоты в спортивном питании
Дополнительный прием аминокислот в последнее время стал очень популярен среди спортсменов, а особенно бодибилдеров. Без достаточного количества аминокислот, невозможен рост мышечной массы. Все дело в том, что наращивание мышечной массы представляет собой систематический процесс микроповреждений мышечных волокон и их заживления. И как раз для заживления мышечных волокон, и нужен белок, как строительный материал. Чтобы употреблять достаточное количество белка, спортсмену необходимо тщательно продумывать свой рацион, в условиях современного темпа жизни, это не всегда возможно и тут приходят на выручку протеиновые и аминокислотные комплексы (ВСАА).
ВСАА (от англ. Branched-chain amino acids — Аминокислоты с разветвленными цепочками) — комплекс, состоящий из трех незаменимых аминокислот:
- Лейцин (Leucine)
- Изолейцин (Isoleucine)
- Валин(Valine)
Лейцин, изолейцин и валин, составляют 35% всех аминокислот в мышечных тканях и принимают участие в процессах анаболизма и восстановления мышц, а также обладают антикатаболическим действием. ВСАА – незаменимые аминокислоты и не могут синтезироваться самостоятельно, поэтому человек вынужден получать их с пищей или специальными добавками в виде капсул или порошка. Попадая в организм ВСАА в первую очередь метаболируются в мышцах, и являются своеобразным «топливом» для роста мышечной массы. Этим они и отличаются от остальных 17 аминокислот. Это свойство помогает значительно улучшить спортивные показатели, улучшает самочувствие спортсмена после длительной тренировки. ВСАА безопасны для здоровья, при непревышении дозировки.
Следует отметить, что принимать протеин и аминокислотные комплексы, следует согласно инструкции на упаковке, не превышая суточную норму.
Резюмируя можно с уверенностью сказать, что аминокислоты – это то, что нужно нашему организму ежедневно для поддержания нормальной жизнедеятельности всех систем организма. Получить их можно не только из продуктов животного происхождения, но и из круп, бобовых и орехов. Если человек питается полноценно, не занимается бодибилдингом и у него нет каких-либо генетических отклонений, то дополнительный прием аминокислот в порошках и капсулах ему не требуется.
свойства и состав, применение в косметике и косметологии
Выберите тип кожи- Сухая
- Жирная
- Нормальная
- Комбинированная
- Показать все
- Сухая
- Жирная
- Нормальная
- Комбинированная
- Показать все
- Подберите уход
- наши эксперты
- Действуйте
- Диагностика кожи
- Конкурсы
- Тесты
- Спросите эксперта