Какие углеводы являются полимерами – Биополимеры углеводы липиды. Углеводы Мономеры углеводов – простые сахара или моносахариды

Углеводы, липиды. Биополимеры.

В состав клеток входит множество органических соединений: углеводы, белки, липиды, нуклеиновые кислоты и другие соединения, которых нет в неживой природе. Органическими веществами называют химические соединения, в состав которых входят атомы углерода.

Атомы углерода способны вступать друг с другом в прочную ковалентную связь, образуя множество разнообразных цепочечных или кольцевых молекул.

Самыми простыми углеродсодержащими соединениями являются углеводороды — соединения, которые содержат только углерод и водород. Однако в большинстве органических, т. е. углеродных, соединений содержатся и другие элементы (кислород, азот, фосфор, сера).

Биологические полимеры (биополимеры). Биологические полимеры — это органические соединения, входящие в состав клеток живых организмов и продуктов их жизнедеятельности.

Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер. Мономеры, соединяясь между собой, образуют цепи, состоящие из тысяч мономеров. Если обозначить тип мономера определенной буквой, например А, то полимер можно изобразить в виде очень длинного сочетания мономерных звеньев: А—А—А—А—…—А. Это, например, известные вам органические вещества: крахмал, гликоген, целлюлоза и др. Биополимерами являются белки, нуклеиновые кислоты, полисахариды.

Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер.

Если соединить вместе два типа мономеров А и Б, то можно получить очень большой набор разнообразных полимеров. Строение и свойства таких полимеров будут зависеть от числа, соотношения и порядка чередования, т. е. положения мономеров в цепях. Полимер, в молекуле которого группа мономеров периодически повторяется, называют регулярным. Таковы, например, схематически изображенные полимеры с закономерным чередованием мономеров:

…А Б А Б А Б А Б…

…А А Б Б А А Б Б…

…А Б Б А Б Б А Б Б А Б Б…

Однако значительно больше можно получить вариантов полимеров, в которых нет видимой закономерности в повторяемости мономеров. Такие полимеры называют нерегулярными. Схематически их можно изобразить так:

.. .ААБАБББАААББАБББББААБ…

Допустим, что каждый из мономеров определяет какое-либо свойство полимера. Например, мономер А определяет высокую прочность, а мономер Б — электропроводность. Сочетая эти два мономера в разных соотношениях и по-разному чередуя их, можно получить огромное число полимерных материалов с разными свойствами. Если же взять не два типа мономеров (А и Б), а больше, то и число вариантов полимерных цепей значительно возрастет.

молекула глюкозы

Оказалось, что сочетание и перестановка нескольких типов мономеров в длинных полимерных цепях обеспечивает построение множества вариантов и определяет различные свойства биополимеров, входящих в состав всех организмов. Этот принцип лежит в основе многообразия жизни на нашей планете.

Углеводы и их строение. В составе клеток всех живых организмов широкое распространение имеют углеводы. Углеводами называют органические соединения, состоящие из углерода, водорода и кислорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы). Общая формула таких углеводов Сn20)m. Примером может служить один из самых распространенных углеводов — глюкоза, элементный состав которой С6Н1206 (рис. 2). Глюкоза является простым сахаром. Несколько остатков простых сахаров соединяются между собой и образуют сложные сахара. В составе молока находится молочный сахар, который состоит из остатков молекул двух простых сахаров (дисахарид). Молочный сахар — основной источник энергии для детенышей всех млекопитающих.

Тысячи остатков молекул одинаковых сахаров, соединяясь между собой, образуют биополимеры — полисахариды. В составе живых организмов имеется много разнообразных полисахаридов: у растений это крахмал (рис. 3), у животных — гликоген, тоже состоящий из тысяч молекул глюкозы, но еще более ветвистый. Крахмал и гликоген играют роль как бы аккумуляторов энергии, необходимой для жизнедеятельности клеток организма. Очень богаты крахмалом картофель, зерна пшеницы, ржи, кукурузы и др.

молекула крахмала

Функции углеводов. Важнейшая функция углеводов — энергетическая. Углеводы служат основным источником энергии для организмов, питающихся органическими веществами. В пищеварительном тракте человека и животных полисахарид крахмал расщепляется особыми белками (ферментами) до мономерных звеньев — глюкозы. Глюкоза, всасываясь из кишечника в кровь, окисляется в клетках до углекислого газа и воды с освобождением энергии химических связей, а избыток ее запасается в клетках печени и мышц в виде гликогена. В периоды интенсивной мышечной работы или нервного напряжения (либо при голодании) в мышцах и печени животных расщепление гликогена усиливается. При этом образуется глюкоза, которая потребляется интенсивно работающими мышечными и нервными клетками.

Таким образом, биополимеры полисахариды — это вещества, в которых запасается используемая клетками энергия растительных и животных организмов.

В растениях в результате полимеризации глюкозы образуется не только крахмал, но и целлюлоза. Из целлюлозных волокон строится прочная основа клеточных стенок растений. Благодаря особому строению целлюлоза нерастворима в воде и обладает высокой прочностью. По этой причине целлюлозу используют и для изготовления тканей. Ведь хлопок почти чистая целлюлоза. В кишечнике человека и большинства животных нет ферментов, способных расщеплять связи между молекулами глюкозы, входящими в состав целлюлозы. У жвачных животных целлюлозу расщепляют ферменты бактерий, постоянно обитающих в специальном отделе желудка.

Известны также сложные полисахариды, состоящие из двух типов простых сахаров, которые регулярно чередуются в длинных цепях. Такие полисахариды выполняют структурные функции в опорных тканях животных. Они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность. Таким образом, важной функцией углеводных биополимеров является структурная функция.

Имеются полимеры сахаров, которые входят в состав клеточных мембран; они обеспечивают взаимодействие клеток одного типа, узнавание клетками друг друга. Если разделенные клетки печени смешать с клетками почек, то они самостоятельно разойдутся в две группы благодаря взаимодействию однотипных клеток: клетки почек соединятся в одну группу, а клетки печени — в другую. Утрата способности узнавать друг друга характерна для клеток злокачественных опухолей. Выяснение механизмов узнавания и взаимодействия клеток может иметь важное значение, в частности для разработки средств лечения рака.

Липиды. Липиды разнообразны по структуре. Всем им присуще, однако, одно общее свойство: все они неполярны. Поэтому они растворяются в таких неполярных жидкостях, как хлороформ, эфир, но практически нерастворимы в воде. К липидам относятся жиры и жироподобные вещества. В клетке при окислении жиров образуется большое количество энергии, которая расходуется на различные процессы. В этом заключается энергетическая функция жиров.

Жиры могут накапливаться в клетках и служить запасным питательным веществом. У некоторых животных (например, у китов, ластоногих) под кожей откладывается толстый слой подкожного жира, который благодаря низкой теплопроводности защищает их от переохлаждения, т. е. выполняет защитную функцию.

Некоторые липиды являются гормонами и принимают участие в регуляции физиологических функций организма. Липиды, содержащие остаток фосфорной кислоты (фосфолипиды), служат важнейшей составной частью клеточных мембран, т. е. они выполняют структурную функцию.

Какие углеводы являются полимерами. Органические вещества


Углеводные полимер — Большая Энциклопедия Нефти и Газа, статья, страница 1

Углеводные полимер

Cтраница 1

Углеводные полимеры, состоящие из моносахаридных единиц, связанных гликозидными связями, называются полисахаридами. Если полисахарид состоит из одного вида моносахаридных единиц, он называется гомополисахаридом, если из нескольких видов — гетерополисахаридом.  [1]

Ассортимент углеводных полимеров может быть расширен за счет изготовления на их основе полусинтетических производных, например, сульфатированных декстранов, маннанов и других гли-канов, относящихся к группе гепариноподобных веществ — гепа-риноидов.  [2]

Пектиновые вещества — это углеводные полимеры, состоящие главным образом из неразветвленных цепей, которые построены из остатков a — D-галактуроновой кислоты, связанных ( 1 — — 4) — связями. Простых химических производных, которые могли бы служить для характеристики пектиновых веществ, нет, однако результаты химического и физического анализов [4, 7, 10] могут дать полезную информацию. Сухая пектовая кислота из цитрусовых, приготовленная, как описано выше, обычно дает следующие результаты анализа: содержание уроновых кислот 92 %, [ a ] f 6 — — 272, эквивалентный вес 192, гидроксамовая реакция на сложные эфиры отрицательна.  [3]

Типы Сахаров, из которых построены углеводные полимеры — полисахариды клеточных оболочек, столь же многочисленны и разнообразны.  [4]

Пока что детальному конформационному анализу подвергались олиго — и полисахариды только с пира-нозными остатками. Поэтому мы рассмотрим те случаи, когда моносахариднымй остатками углеводных полимеров являются различные пираноидные производные. Естественно, что для конформационного анализа таких полимеров необходимо прежде всего знание конформационных свойств пираиоидных моносахаридов ( разд.  [5]

Диэлектрические пленки используют в интегральных схемах в качестве изоляционных слоев ( пленочные конденсаторы, МДП-транзисторы, многослойный электрический монтаж и др.) и защитных покрытий. При формировании диэлектрических слоев применяют моноокиси кремния ( SiO), германия ( GeO), трехсернистую сурьму ( 80283), окиси титана ( ТЮ2), тантала ( TasOs), алюминия ( АЬОз), калькогенидные стекла, кварц, углеводные полимеры ( стирол, бутадиен) и др. Чаще всего диэлектриком пленочных конденсаторов служит моноокись кремния.  [6]

Макромолекулы, составляющие основную массу сухих веществ клетки, — полимеры, построенные из мономерных единиц. Исключением служат липиды, не являющиеся полимерами, так как молекулы в них не соединены между собой ковалентными связями. Углеводные полимеры построены на основе повторяющихся единиц одного, двух или более типов, например, запасной полисахарид гликоген, построенный из остатков глюкозы, или пеп-тидогликан клеточной стенки, образованный чередованием N-ацетилглюкозамина и TV-ацетилмурамовой кислоты.  [7]

Этот факт был воспринят как указание на важность определенной структурной регулярности полисахарида. Сейчас показано, что многие легкодоступные производные полисахаридов могут быть использованы в хиральной ЖХ. Недавно была исследована серия фенилкарбамат-ных производных различных углеводных полимеров. На многих из этих новых ХНФ было достигнуто лучшее разделение некоторых рацематов, чем на соответствующих производных целлюлозы. Данные, собранные в табл. 7.6, дают некоторое общее представление о разделительной способности исследованных сорбентов. Как уже упоминалось, механизм разделения на производных полисахаридов изучен очень слабо.  [8]

Полученные результаты сравнивают с данными табл. I. Во время пиролиза образца в пробирке проверяют реакцию образующихся летучих продуктов с помощью увлажненной индикаторной лакмусовой бумаги. Слабокислые пары образуются при разложении углеводных полимеров, например, нитрата и ацетата целлюлозы. Сильнокислые пары выделяются при разложении поливинилхлорида и его сополимеров, поливи-нилиденфторида, политрифторхлорэтилена и их сополимеров, хлорированного полиэтилена. Щелочная реакция продуктов разложения характерна для азотсодержащих полимеров: полиамидов, полиуретанов, аминоформальдегидных смол. Нейтральные продукты разложения выделяются при пиролизе полиолефи-нов, изопреновых и бутадиеновых каучуков, силоксанов, полиэфиров.  [9]

Химический состав и свойства гемицеллюлоз находятся в тесной связи с природой растительной ткани. Основным компонентом гемицеллюлоз древесины хвойных пород являются гексозаны, а лиственной древесины — пентозаны. Пока еще не установлено, чем обусловлена эта взаимосвязь и какие функции в процессе жизнедеятельности растений выполняют отдельные углеводные полимеры. Но поскольку такая связь существует, целесообразно рассмотреть состав и структуру полисахаридов гемицеллюлоз по указанным основным группам растительных тканей.  [10]

Страницы:      1

www.ngpedia.ru

Глава I. Углеводы

Глава I. УГЛЕВОДЫ

§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных.  В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим.  Первые представители этих веществ описывались суммарной формулой Сmh4nOn или Cm(h4O)n. Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

 

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы. Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С3), тетрозы (С4), пентозы (С5), гексозы (С6) и т.д.: 

 

Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды, или полиозы)  представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu2+, Ag+) делят на восстанавливающие и невосстанавливающие. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды. Гомополисахариды п

Углеводы полимерные — Справочник химика 21

    За исключением производства полимер-бензина нормальные бутилены не подвергают полимеризации. Однако изобутилен образует несколько видов ценных полимерных продуктов. Дп-и триизобутилены представляют собой не только отличные компоненты моторного топлива, но могут также быть использованы в качестве алкилирующих агентов для ароматических углеводо- [c.581]
    Углеводы в форме крахмала являются важнейшими источниками энергии в пище. Для получения этой энергии мы либо употребляем в пищу зерна, в которых накапливается крахмал, либо скармливаем эти зерна животным, которые синтезируют мясные белки, а затем съедаем их. В любом случае потребляемая нами энергия в конце концов поставляется крахмалом, полимерным продуктом фотосинтеза. Целлюлоза входит в состав хлопка и льна, а также искусственных продуктов — ацетата целлюлозы и вискозного волокна. Дерево, из которого сделана наша мебель, также содержит целлюлозу. Бумага этой книги получена в процессе обработки целлюлозы. Даже деньги давно перестали делать из благородных металлов, заменив их целлюлозой. В этом разделе будет кратко рассмотрено, что представляют собой углеводы и как они используются. 
[c.308]

    Перспектива увеличения производства полимерных материалов на основе целлюлозы, хитина и фибриллярного белкового сырья (типа фиброина, коллагена, кератина и пр.), особенно при условии создания интенсифицированных микробиологических технологий по синтезу этих волокно- и пленкообразующих полимеров, является достаточно реальной. Весьма парадоксальным и, по-видимому, случайным является факт образования природных полимерных углеводов на основании формирования О-рядов, а белков — Ь-рядов. И еще два замечания необходимо сделать при анализе ситуации, связанной с возможностью использования природных полимеров, и в частности белков, в качестве волокнообразующих полимеров. 

[c.336]

    Многие вещества входят в живые организмы в форме макромолекул, полимеров с высокой молекулярной массой. Биополимеры можно подразделить на три большие класса белки, углеводы и нуклеиновые кислоты. В пище животных белки, углеводы и молекулы из класса соединений, называемого жирами, служат важнейшими источниками энергии. Кроме того, полимерные углеводы выполняют функции важнейших строительных материалов, придающих форму растительным организмам, а [c.443]

    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. 

[c.327]


    Полисахариды — продукты конденсации большого числа молекул моносахаридов, полимерные углеводы. [c.232]

    В соответствии со строением углеводы подразделяются иа группы м о и о с а X а р п д ы — простейшие углеводы, о л н г о с а X а р и д ы, представляющие собой продукты конденсации двух или нескольких молекул моносахаридов, и полисахариды — продукты конденсации большого числа молекул моносахаридов, полимерные углеводы. [c.423]

    Нуклеиновые кислоты — полимерные соединения. Их цепи построены из остатков фосфорной кислоты и углеводов рибозы и дезоксирибозы. К углеводным фрагментам присоединены остатки гетероциклических оснований, относящихся к пиримидиновому и пуриновому рядам, т. е. являющихся производными пиримидина и пурина  [c.314]

    А если учесть, что глюкоза и подобные ей соединения образуются почти что из ничего, т.е. являются фактически первыми веществами живой клетки по биосинтетическому пути, то можно отдать им предпочтение в очередности написания. Если аминокислоты, и особенно их полимерные производные, полипептиды и белки, в большей степени сосредоточены в животных организмах, то углеводы и их производные — это прерогатива царства растений. [c.31]

    Для характеристики гемицеллюлоз необходимо знать качественный и количественный состав молекул полисахаридов, входящих в их состав. Исследование этих полимерных углеводов включает установление числа, соотношения и последовательности распределения компонентов в полимерной цепи, природы, числа и местоположения остатков, составляющих ответвления цепи, состава и положения неуглеводных заместителей, степени разветвленности молекул, положения и конфигурации гликозидных связей определение спектров поглощения, молекулярного веса, оптической активности, плотности и других химических, физико-химических и физических свойств. [c.55]

    При исследовании полимерных соединений следует обращать внимание на возможность образования олигосахаридов, не характерных для исходного полисахарида, в результате реакции реверсии между моносахаридами и уроновыми кислотами в условиях кислого гидролиза [209. При концентрировании растворов количество продуктов реверсии возрастает. В разбавленных растворах углеводов (менее 1 /о) реакция реверсии незначительна, поэтому гидролиз полисахаридов и олигосахаридов следует вести только в разбавленных растворах. [c.134]

    В биохимии часто приходится иметь дело с макромолекулами, или полимерами. Белки и некоторые углеводы являются полимерами в подлинном смысле слова, и многие их свойства непосредственно обусловлены структурой полимерных систем. В следующей главе нам предстоит познакомиться со специфическим классом веществ, называемых коллоидами они представляют собой частицы приблизительно таких же размеров. Из подобных частиц состоят кровь, мышцы, кожа, волосы они входят в состав живой клетки—строительного кирпичика любой живой системы. [c.477]

    Восстановление углеводов является в настоящее время одним из путей выяснения их строения. Так, например, для выяснения природы концевых моносахаридов в

Углеводы, подготовка к ЕГЭ по химии

Углеводы — группа природных органических соединений, химическая структура которых отвечает формуле Cm(H2O)n. Входят в состав всех без исключения живых организмов.

Углеводы
Классификация

Углеводы подразделяются на

  • Моносахариды
  • Моносахариды (греч. monos — единственный + sacchar — сахар) — наиболее распространенная группа углеводов в природе, содержащие в молекулах пять (пентозы) или шесть (гексозы) атомов углерода.

    Из наиболее известных представителей к пентозам относятся рибоза и дезоксирибоза, к гексозам — глюкоза и фруктоза.

    Моносахариды
  • Олигосахариды
  • Олигосахариды (греч. ὀλίγος — немногий) — группа углеводов, в молекулах которых, содержится от 2 до 10 моносахаридных остатков. Если в молекуле содержатся два моносахаридных остатка, ее называют дисахарид.

    Наиболее известны следующие дисахариды: сахароза, лактоза, мальтоза. Они являются изомерами, их молекулярная формула одинакова — C12H22O11.

    Олигосахариды, дисахариды
  • Полисахариды
  • Полисахариды (греч. poly — много) — природные биополимеры, молекулы которых состоят из длинных цепей (десятки, сотни тысяч) моносахаридов.

    Например, глюкоза — моносахарид, а крахмал, гликоген и целлюлоза — ее полимерами. Также к полимерам относится хитин, пектин. Формула крахмала, целлюлоза — (C6H10O5)n

    Полисахариды
Моносахариды

Получение глюкозы возможно несколькими способами:

  • Реакция Бутлерова
  • В присутствии ионов металла, молекулы формальдегида соединяются, образуя различные углеводы, например, глюкозу.

    Получение глюкозы из формальдегида
  • Гидролиз крахмала
  • В присутствии кислоты и при нагревании, крахмал (полимер) распадается на мономеры — молекулы глюкозы.

    Гидролиз крахмала
  • Фотосинтез
  • Эту реакцию изобрела природа, для нее существует необыкновенный катализатор — солнечный свет (hν).

    6CO2 + 6H2O → (hν) C6H12O6 + 6O2

По химическому строению глюкоза является пятиатомным альдегидоспиртом, а, значит, для нее характерны реакции и альдегидов, и многоатомных спиртов.

  • Реакции по альдегидной группе
  • Окисление глюкозы идет до глюконовой кислоты. Это можно осуществить с помощью реакций серебряного зеркала, с гидроксидом меди II.

    Окисление глюкозы

    Обратите особое внимание на то, что при написании формулы аммиачного раствора в полном виде будет правильнее указать в продуктах не кислоту, а соль — глюконат аммония. Это связано с тем, что аммиак, обладающий основными свойствами, реагирует с глюконовой кислотой с образованием соли.

    Окисление глюкозы аммиачным раствором оксида серебра

    Восстановление глюкозы возможно до шестиатомного спирта сорбита (глюцита), применяемого в пищевой промышленности в качестве сахарозаменителя. На вкус сорбит менее приятен, менее сладок, чем сахар.

    Восстановление глюкозы
  • Реакции по гидроксогруппам
  • Глюкоза содержит пять гидроксогрупп, является многоатомным спиртом. Она вступает в качественную реакцию для многоатомных спиртов — со свежеприготовленных гидроксидом меди II.

    В результате такой реакции образуется характерное голубое окрашивание раствора.

    Глюкоза и гидроксид меди II
  • Брожение глюкозы
  • Возможны несколько вариантов брожения глюкозы: спиртовое, молочнокислое, маслянокислое. Эти виды брожения имеют большое практическое значение и характерны для многих живых организмов, в частности бактерий.

    Брожение глюкозы

Фруктоза является изомером глюкозы. В отличие от нее не вступает в реакции окисления — она является кетоспиртом, а кетоны окислению до кислот не подвергаются.

Для нее характерна качественная реакция как многоатомного спирта — со свежеприготовленных гидроксидом меди II. В реакцию серебряного зеркала фруктоза не вступает.

Применяется фруктоза как сахарозаменитель. Она в 3 раза слаще глюкозы и в 1,5 раза слаще сахарозы.

Фруктоза
Дисахариды

Как уже было сказано ранее, наиболее известные дисахариды: сахароза, лактоза и мальтоза — имеют одну и ту же формулу — C12H22O11.

При их гидролизе получаются различные моносахариды.

Гидролиз сахарозы, лактозы и мальтозы
Полисахариды

Из множества реакций, более всего мне хотелось бы выделить гидролиз крахмала. В результате образуется глюкоза.

Гидролиз крахмала

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

7319273.png

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — запасное вещество животной клетки.

Известны также сложные полисахариды, выполняющие структурные функции в опорных тканях животных (они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность).

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.bestreferat.ru/referat-100195.html

Биополимеры углеводы липиды. Углеводы Мономеры углеводов – простые сахара или моносахариды

1. Дайте определения понятий.
Углеводы – органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.
Моносахарид – простой углевод, при гидролизе не расщепляющийся на более простые соединения.
Дисахарид – углевод, представляющий собой соединений из двух моносахаридов.

2. Дополните схему «Разнообразие углеводов в клетке».

3. Рассмотрите рисунок 11 учебника и приведите примеры моносахаридов, в состав которых входит:
пять атомов углерода: рибоза, дезоксирибоза;
шесть атомов углерода: глюкоза, фруктоза.

4. Заполните таблицу.

Биологические функции моно- и дисахаридов

5. Назовите растворимые в воде углеводы. Какие особенности строения их молекул обеспечивают свойство растворимости?
Моносахариды (глюкоза, фруктоза) и дисахариды (сахароза). Их молекулы небольшого размера и полярные, поэтому растворимы в воде. Полисахариды образуют длинные цепи, которые в воде не растворяются

6. Заполните таблицу.

БИОЛОГИЧЕСКИЕ ФУНКЦИИ ПОЛИСАХАРИДОВ

7. Полисахарид хитин входит в структуру клеточных стенок грибов и составляет основу наружного скелета членистоногих. С каким из известных вам полисахаридов он проявляет функциональное сходство? Ответ обоснуйте.
Хитин является веществом, очень близким по строению, физико-химическим свойствам и биологической роли к целлюлозе. Он выполняет защитную и опорную функции, содержится в клеточных стенках грибов, некоторых водорослей, бактерий.

8. Дайте определения понятий.
Полипептид — химическое вещество, состоящее из длинной цепи аминокислот, связанных пептидными связями.
Денатурация — потеря белками или нуклеиновыми кислотами их естественных свойств вследствие нарушения пространственной структуры их молекул.
Ренатурация — восстановление (после денатурации) биологически активной пространственной структуры биополимера (белка или нуклеиновой кислоты).

9. Объясните утверждение: «Белки — носители и организаторы жизни».
По Энгельсу «Всюду, где есть встречаем жизнь, она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, которое не находится в процессе разложения, мы без исключения встречаем и явления жизни…». «Жизнь есть способ существования белковых тел…».

10. Напишите общую структурную формулу аминокислоты. Объясните, почему мономер белка носит такое название.
RCH(Nh3)COOH. Аминокислоты объединяют в себе свойства кислот и аминов, т. е. содержат наряду с карбоксильной группой -COOH аминогруппу -Nh3.

11. Чем отличаются друг от друга различные аминокислоты?
Аминокислоты отличаются друг т друга по строению радикала.

12. Заполните кластер «Многообразие белков и их функции».
Белки: гормоны, транспортные белки, ферменты, токсины, антибиотики, запасные белки, защитные белки, двигательные белки, структурные белки.

13. Закончите заполнение таблицы.

14. Пользуясь учебником, объясните суть высказывания: «Биохимические реакции, протекающие в присутствии ферментов, — основа жизнедеятельности клеток».
Белки-ферменты катализируют множество реакций, обеспечивают слаженность ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

15. Приведите примеры белков, участвующих в перечисленных процессах.
Бег, ходьба, прыжки – актин и миозин.
Рост – соматотропин.
Транспорт кислорода и углекислого газа в крови – гемоглобин.
Рост ногтей и волос – кератин.
Свертывание крови – протромбин, фибриноген.
Связывание кислорода в мышцах – миоглобин.

16. Установите соответствие между конкретными белками и их функциями.
1. Протромбин
2. Коллаген
3. Актин
4. Соматотропин
5. Гемоглобин
6. Инсулин
Роль в организме
A. Сократительный белок мышц
Б. Гормон гипофиза
B. Обеспечивает свертываемость крови
Г. Входит в состав волокон соединительной ткани
Д. Гормон поджелудочной железы
Е. Переносит кислород

17. На чем основано дезинфицирующее свойство этилового спирта?
Он разрушает белки (в т. ч. токсины) бактерий, приводит к их денатурации.

18. Почему вареное яйцо, погруженное в холодную воду, не возвращается к исходному состоянию?
Происходит необратимая денатурация белка куриного яйца под воздействием высокой температуры.

19. При окислении 1 г белков выделяется столько же энергии, сколько при окислении 1 г углеводов. Почему организм использует белки как источник энергии только в крайних случаях?
Функции белков – это, во-первых, строительная, ферментативная, транспортная функции, и только в крайних случаях организм использует или тратит белки на получение энергии, только тогда, когда в организм не поступают углеводы и жиры, когда организм голодает.

20. Выберите правильный ответ.
Тест 1.
Белки, увеличивающие скор

Биополимеры — Википедия

Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.

Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

  • α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,
  • β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно),
  • неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилизируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы — ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, то есть обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок — инсулин — ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин — первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Основная статья: ДНК
  • Первичная структура ДНК — это линейная последовательность нуклеотидов в цепи. Как правило, последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5′- на 3′-конец цепи.
  • Вторичная структура — это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипараллельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований — образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105−106. Исходными веществами, из которых построены нуклеотиды — звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой — дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвлённости макромолекул, причём амилопектин и гликоген могут быть отнесены к сверхразветвлённым природным полимерам, то есть дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей — наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.

Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода α-D-глюкопиранозных звеньев, связанных α-1,4-гликозидными связями, OH-группа заменена группами -NHCH3COO в хитине и группой -NH2 в хитозане.

Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород — свыше 60 %, лиственных — около 40 %. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.

В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.

Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.

Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную её часть в деревьях составляет лигнин — до 30 %. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (M ≈ 104) сверхразветвлённый полимер, образованный в основном из остатков фенолов, замещённых в орто-положении группами -OCH3, в пара-положении группами -CH=CH-CH2OH. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30 %. Пектин относится к гетерополисахаридам, то есть сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и её метилового эфира, связанных α-1,4-гликозидными связями.

Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *